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Background: Effective measures exist to prevent the spread of HIV.
However, the identification of patients who are candidates for these
measures can be a challenge. A machine learning model to predict risk
for HIV may enhance patient selection for proactive outreach.

Setting: Using data from the electronic health record at Parkland
Health, 1 of the largest public healthcare systems in the country,
a machine learning model is created to predict incident HIV cases.
The study cohort includes any patient aged 16 or older from 2015 to
2019 (n = 458,893).

Methods: Implementing a 70:30 ratio random split of the data into
training and validation sets with an incident rate ,0.08% and
stratified by incidence of HIV, the model is evaluated using a k-fold

cross-validated (k = 5) area under the receiver operating character-
istic curve leveraging Light Gradient Boosting Machine Algorithm,
an ensemble classifier.

Results: The light gradient boosting machine produces the
strongest predictive power to identify good candidates for HIV
PrEP. A gradient boosting classifier produced the best result with an
AUC of 0.88 (95% confidence interval: 0.86 to 0.89) on the training
set and 0.85 (95% confidence interval: 0.81 to 0.89) on the validation
set for a sensitivity of 77.8% and specificity of 75.1%.

Conclusions: A gradient boosting model using electronic health
record data can be used to identify patients at risk of acquiring HIV
and implemented in the clinical setting to build outreach for
preventative interventions.
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BACKGROUND
Despite improvements in morbidity and mortality

associated with HIV due to antiretroviral therapy, the
incidence of HIV has only modestly decreased, with a 9%
decrease between 2015 and 2019 and a total of 36,136 cases
in 2021.1 The US Preventative Services Task Force recom-
mends preexposure prophylaxis (PrEP) as a best practice to
reduce the risk of acquiring HIV.2,3 The US Department of
Health and Human Services Ending the HIV Epidemic in the
US (EHE) initiative was launched in 2019 with a goal of
reducing new HIV infections in the United States by 90% by
2030. The EHE is targeting geographic areas with a dispro-
portionate burden of incident HIV infections and working to
scale up effective prevention services. However, identifica-
tion and engagement of patients with an increased likelihood
of HIV is often a challenge in the clinical setting and remains
a logistical barrier to reaching the EHE goals. While studies
surveying primary care providers have suggested increased
awareness of PrEP, remaining barriers to implementing PrEP
into primary care practice includes lack of familiarity with
indications for PrEP and time constraints.4,5 The need to
assure privacy and confidentiality and ask behavior-related
questions may be seen as time consuming and may discour-
age busy clinicians from engaging in HIV risk assessment.

Machine learning models have been successful in
addressing process improvement challenges within the
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clinical workflow.6,7 For example, for sepsis, early identifi-
cation and diagnosis are imperative to mitigate the risk of
severe health outcomes, and several machine learning models
have demonstrated usefulness in early identification.7

HIV predictive models using electronic health record
(EHR) data have been described and are a promising tool to
assist in the implementation of HIV prevention efforts.8–14

Such a predictive model built into the EHR may help
providers identify individuals eligible for PrEP.

SETTING
Prior studies have utilized patient data from the EHR to

develop prediction models for incident HIV.8–14 These
models have the potential to be used clinically to identify
patients with an increased likelihood of HIV before acquisi-
tion and support prevention interventions. However, there are
very few published models that (1) include data from the
southern areas of the United States and uninsured popula-
tions,13 (2) are able to identify cases in all subpopulations by
sex at birth15,16 effectively without multiple specialized
models for each subpopulation, and (3) utilize EHR data
alone for ease and scalability in similar healthcare settings.
Prior models address some of these criteria but not all. The
development of predictive models that meet these criteria is
imperative to effectively (1) address the needs of vulnerable
populations and (2) implement them in hospital settings with
limited resources.

In this study, a prediction model is developed for
identification of HIV cases at Parkland Health (PH), one of
the largest safety-net hospitals in the country, which serves
a large uninsured population in Dallas County, Texas. Dallas
County was identified by the EHE as having a disproportion-
ate burden of incident HIV and is a target jurisdiction of the
EHE initiative.

METHODS

Data
At PH, EHR data were extracted from Epic (Epic

Systems Corporation, Verona, WI) for any patient aged 16
or older from 2015 to 2019. There were 458,893 unique
patients with at least 1 inpatient, emergency, or outpatient
visit within the period. The incident HIV population is
defined using information available from PH’s HIV regis-
try, laboratory results, diagnosis information, and previous
HIV screening data followed by chart reviews for any
incident case between 2015 and 2019. Each newly positive
HIV screening test in the health system is reviewed by
clinical staff who perform direct outreach to the patient and
the local health department to determine and document
whether the result represents an incident versus a known
HIV diagnosis. Any patient who had a visit within the
defined timeline but was diagnosed with HIV before 2015
was excluded from the analysis. Overall, the incidence rate
of HIV is approximately 0.08% (or 80 per 100,000) in the
cohort. Data on 60 different variables encompassing
demographic, social history, laboratory test results, medi-

cal diagnoses, medication history, and hospital utilization
history for the population were included based on pub-
lished models8–10 and input from clinical experts. Further-
more, owing to the rarity of certain variables, some
variables are grouped into related categories (eg, stomach
cancer, skin cancer, digestive cancer, etc. were grouped
into a variable named non-AIDS-defining cancers). Table 1,
Supplemental Digital Content (see http://links.lww.com/
QAI/C311) provides a description of several variables
considered for the predictive model.

Training and Validation Data Set
The data set created was then split randomly in the ratio

70:30 to create training data with 70% patient records and
validation data with 30% patient records. To ensure that the
incident rate remained similar in both splits, the data split was
stratified by the outcome variable of incident HIV cases. This
resulted in a training data set of 322,142 unique patients and
a validation data set of 136,751 unique patients. Both data
sets had a similar prevalence rate of ,0.08%.

Variable Transformations
Univariate analysis was performed to understand the

distributions of the variables. To handle varied scale ranges,
all continuous variables were transformed into categorical
variables, either by binning them into finite categories or by
transforming them into binary variables based on training data
availability. For example, the univariate analysis showed the
presence of a higher HIV rate in the population below the age
of 47. Hence, age was converted to a binary variable, which is
flagged as 1 if the patient is ,47 years old and 0 if the patient
is$47 years old. For continuous variables, such as number of
visits, the variable was binned into 4 categories (0 visits [no
prior visit history], 1–10 visits, 11–30 visits, and $31 visits)
based on the distribution of the variable. Similar approaches
were used for all variables, as applicable, to transform them
into categorical data.

Our data did have missing data which were handled
depending on the variable type or missing counts. The
following approaches were employed: (1) In case of missing
data (eg, contraceptive usage), a binary variable was created if
no information was available for a particular patient to
indicate missing information for the variable; (2) In case of
variables related to laboratory test results (eg, chlamydia
positivity), patients were labeled “1” if positive previously
and were labeled “0” if either negative previously or if no
information is available in the EHR; (3) In other cases, where
missing values were few or negligible (eg, sex, which
had ,0.2% missing), the variable was converted to binary
(eg, patient was labeled “1” if male with all the non-male
population and missing values labeled “0”).

The variables were then checked for multicollinearity
using the variance inflation factor (VIF). VIF explains the
strength of correlated independent (or predictor) variables.
Handling correlated independent variables is important to
avoid any inflation in the variance of the model with highly
correlated variables. For example, an independent variable
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“Smoking Frequency—Annually” could be highly correlated
with another independent variable “Smoking—Number of
times per week.” Usage of both highly correlated variables
can result in skewed or misleading results, particularly in linear
models like Logistic Regression. VIF with a value of $10 for
a variable implies that the variable is highly correlated. Hence,
those features with VIF $10 were excluded from the variables
list. This resulted in 29 variables from the original list of
potential variables (see Table 1, Supplemental Digital Content,
http://links.lww.com/QAI/C311).

Algorithm and Training
An initial application of the stratified K-fold cross-

validation (k = 5) technique for model training is imple-
mented. Stratified K-fold cross-validation splits the training
data into k splits stratified by the outcome variable to ensure
the incident rate is similar in all the data splits and then trains
the model on k–1 splits and validates the model on the kth
split. This method iteratively trains the model on all the data
splits available until each split is used as a validation set.
Then, the average of performances is considered for optimi-
zation and generalization.

Since it is unknown which machine learning algo-
rithm can learn from the input data better before any model

training and evaluation, different algorithms can be trained,
and their performance can be compared to identify the best-
performing model. While linear models like Logistic
Regression are interpretable, ensemble models can be
useful to boost predictive performance and to avoid issues
like overfitting.

After training several models using machine learning
algorithms including Logistic Regression, Random Forest,
XGBoost, and Balanced Bagging Classifier (Fig. 1); Light
Gradient Boosting Machine (LGBM) Algorithm,17 which is
an ensemble classifier, was the best-performing model based
on the evaluation metrics such as sensitivity and specificity. A
Decision Tree classifier is used as the base estimator in the
ensemble. Boosting combines a set of weak learners (in this
study, the weak learner used is a Decision Tree classifier) that
are trained sequentially, with each successor weak learner
improving from the errors of the predecessor weak learner to
result in a strong boosting classifier.

While all the variables were used for training initially,
variable selection was done using the relative variable
importance derived from the ensemble classifier. Relative
variable importance is calculated by the number of times
a feature is used to split the data in the model. At each split,
a variable usage is determined depending on the maximiza-
tion of homogeneity of the subsets created by the split.17

FIGURE 1. ROC curves for the candidate models (legend displays model name—corresponding AUC with CIs).
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Given the low prevalence rate and high-class imbalance
of the outcome variable in the data set, to avoid any bias
toward the majority class, the weights for the classes were
adjusted inversely proportional to the class frequencies. Other
sampling strategies such as SMOTE (Synthetic Minority
Oversampling Technique) and ADASYN (Adaptive Syn-
thetic) to oversample the minority classes were explored as
potential options that resulted in lower accuracy results.

Evaluation
Evaluation metrics such as area under the receiver

operator characteristic (ROC) curve (AUC), sensitivity,
specificity, and positive and negative predictive values with
95% confidence intervals for the validation data set identified
the best possible model. An evaluation, found in Table 1, of
the best model at different risk thresholds was applied to
better understand the model’s performance in the identifica-
tion of incident HIV cases.

RESULTS

Model Results
The cohort of 458,893 PH patients was split into

a training set of 322,142 patients (consisting of 256 incident
HIV cases) and a validation set of 136,751 patients (consist-
ing of 108 incident HIV cases). In the training data, 78
patients of 256 incident HIV cases were women, and 27 of
108 incident HIV cases were women in the validation data.
Table 2 shows that the randomly split training and validation
sets based on stratification of the outcome variable resulted in
similar demographic distributions across age, race, ethnicity,
and marital status.

The LGBM model had the best discrimination with an
AUC of 0.88 (95% confidence interval [CI]: 0.86 to 0.89) on
the training set and when validated using the randomly split
validation data set, it resulted in an AUC of 0.85 (95% CI:
0.81 to 0.89). Other models trained had AUCs in the range of

0.785–0.848 using the validation cohort (Fig. 1). While the
other models were close enough in performance, the decision
to choose a boosting model was based on the most optimal
performance using metrics such as sensitivity and positive

TABLE 1. Performance of LGBM Model on Validation Cohort

Top Percent of Scores (%) Sensitivity (%) Positive Predictive Value (%) Specificity (%) Negative Predictive Value (%) Risk Score

1 13 1.5 99.3 99.9 0.8

3 20.4 1 98.4 99.9 0.78

5 41.7 0.7 95 100 0.73

10 57.4 0.5 90 100 0.63

15 66.7 0.4 85.7 100 0.56

20 70.4 0.3 80.3 100 0.52

25 77.8 0.2 75.1 100 0.49

30 82.4 0.2 70.1 100 0.46

40 88.9 0.2 60 100 0.38

50 92.6 0.1 50.2 100 0.3

60 94.4 0.1 40.7 100 0.26

70 98.1 0.1 30 100 0.21

80 98.1 0.1 20.1 100 0.17

90 99.1 0.1 10 100 0.12

100 100 0.1 0 100 0.08

TABLE 2. Demographics Table Comparing the Training and
Validation Cohorts

Variable
Training

(n = 322,142)
Validation

(n = 136,751)

Age 42.5 (15.9) 42.5 (15.9)

Birth sex

Female 209,410 (65.0) 89,417 (65.4)

Male 112,676 (34.9) 47,307 (34.6)

Other/Unknown 56 (0.02) 27 (0.02)

Ethnicity and first race

Hispanic

White 168,772 (52.7) 71,751 (52.5)

Black 791 (0.3) 316 (0.2)

Others 2360 (0.7) 1046 (0.7)

Non-Hispanic

White 43,708 (13.6) 18,389 (13.5)

Black 88,301 (27.4) 37,850 (27.7)

Others 13,171 (4.1) 5772 (4.2)

Unknown 4039 (1.2) 1627 (1.2)

Marital status

Common law 19,658 (6.1) 8366 (6.1)

Married 100,449 (31.1) 42,529 (31.1)

Single 149,401 (46.4) 63,394 (46.4)

Other/unknown 52,634 (16.3) 22,462 (16.4)

Insurance coverage type

Uninsured 269,517 (83.68) 114,317 (83.6)

Medicare/Medicaid 40,550 (12.59) 17,369 (12.7)

Commercial 11,450 (3.56) 4784 (3.5)

Unknown 625 (0.19) 281 (0.21)

Incident HIV 256 (0.1) 108 (0.1)

Data are represented as mean (SD) for age and counts (percentage) for other
variables.
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predictive value (PPV) along with the AUC. For example, the
use of Logistic Regression in the validation cohort could have
resulted in an additional 3380 false positives and 3 additional
false negatives as compared with the LGBM classifier. The
LGBM classification model predicted 77.8% (84 of 108) of
the total HIV cases in the validation set to be of high risk. The
84 true positives include 91.4% (74 of 81) of male cases and
37% (10 of 27) of female cases; 73% (54 of 74) of non-
Hispanic cases and 85% (29 of 34) of Hispanic cases; 69.3%
(43 of 62) of Race-African American cases, 86.3% (38 of 44)

of Race-White cases; 80% (76 of 95) of uninsured cases,
100% (4 of 4) of cases with commercial insurance, and 33.3%
(3 of 9) of cases with Medicare/Medicaid insurance.

The validation cohort included 12 patients who were
men who had sex with men among the 108 HIV cases, and
the model predicted high risk for 100% (12 of 12) of them.

The final model selected has the top 26 variables by
variable importance. Number of variables, n = 26, was chosen
after evaluating several values of n on the best combination of
performance metrics such as AUC, sensitivity, and

TABLE 3. HIV Risk Predictors in the Development Data Set

Variable Non-HIV (n = 458,529) Non-HIV Data Availability HIV (n = 364) HIV Data Availability

Age 42.483 (15.9) 458,529 (100) 34.81 (12.1) 364 (100)

Use of contraceptives 92,268 (20.1) 51 (14)

Condom 26,248 (5.7) 33 (9.1)

Others 66,020 (14.4) 18 (4.9)

Demographics

Marital status—single 212,501 (46.4) 452,639 (98.7) 294 (80.8) 354 (97.2)

Birth sex—male 159,724 (34.9) 458,529 (99.8) 259 (71.2) 364 (100)

Language—English 284,756 (62.1) 386,478 (84.3) 303 (83.2) 364 (100)

Tobacco use 148,543 (32.4) 364,245 (79.3) 193 (53.0) 326 (89.5)

Ethnicity and race 452,867 (98.7) 360 (98.9)

Hispanic

White 241,400 (52.7) 123 (33.8)

Black 1106 (0.2) 1 (0.3)

Others 3399 (0.7) 7 (1.9)

Non-Hispanic

White 62,050 (13.5) 47 (12.9)

Black 125,972 (27.5) 179 (49.2)

Others 18,940 (4.1) 3 (0.8)

Unknown 5662 (1.2) 4 (1.1)

Social history

Men who have sex with men (MSM) 1324 (0.3) 1324 (0.3) 31 (8.5) 31 (8.5)

Sexually active 163,496 (35.7) 365,388 (79.7) 115 (31.6) 212 (58.2)

Tobacco use 73,931 (16.1) 185,452 (40.4) 147 (40.4) 340 (93.4)

Alcohol use 101,111 (22.1) 361,882 (78.9) 135 (37.1) 358 (98.3)

Drug use 35,099 (7.7) 96,331 (21) 92 (25.3) 334 (91.7)

Any (+) chlamydia screening 10,050 (2.2) 10,050 (2.2) 10 (2.8) 10 (2.8)

Any prior HIV RNA tests 164,360 (35.9) 164,360 (35.9) 135 (37.1) 135 (37.1)

Any amphetamine-positive tests 4672 (1.0) 4672 (1.0) 24 (6.6) 24 (6.6)

Hospital utilization 458,529 (100) 364 (100)

Inpatient admissions in the past 2 yrs 74,224 (16.2) 44 (12.1)

Total health system visits

,1 2055 (0.5) 0

1 to 10 108,735 (23.7) 176 (48.4)

11 to 30 113,394 (24.7) 88 (24.2)

$31 234,345 (51.1) 100 (27.5)

Exposure to venereal disease (ICD 10 code) 8984 (1.9) 8984 (1.9) 25 (6.8) 25 (6.8)

ICD-10 code indicating risk 3274 (0.7) 3274 (0.7) 13 (3.6) 13 (3.6)

History of hepatitis C 13,771 (3.0) 13,771 (3.0) 20 (5.5) 20 (5.5)

History of syphilis 2267 (0.49) 2267 (0.49) 15 (4.12) 15 (4.12)

History of lower respiratory tract infection 71,281 (15.6) 71,281 (15.6) 49 (13.5) 49 (13.5)

History of non-HIV infections 38,346 (8.4) 38,346 (8.4) 23 (6.3) 23 (6.3)

History of non-AIDS-defining cancers 5277 (1.2) 5277 (1.2) 2 (0.6) 2 (0.6)

Data are represented as mean (SD) for age and counts (percentage) for other variables. Data availability is represented as counts (percentage) for all variables.
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specificity. Table 3 presents the comparison of the variables
retained in the model for the patients without HIV and with
HIV. Figure 2 shows the importance of the variables used in
the model. The top 5 predictors in the 26 variables used in the
model were as follows: marital status being single or
unmarried; age being less than 47; sex at birth being male;
total visits in the range of 1–10; and ethnicity being non-
Hispanic.

Table 1 presents the sensitivity, PPV, specificity, and
negative predictive value for the model at different thresholds
of risk in the validation cohort. Positive predictive values
remain low, while negative predictive values remain high
always.

Further Discussion Results and Limitations
Overall, the predictive model resulted in an AUC of

0.85 (95% CI: 0.81 to 0.89) with the ability to segment the
patient population between HIV and non-HIV. Despite the
low incidence rate overall (,0.08%), the model was able to
identify 77.8% of the HIV cases at the default threshold of
0.50, flagging patients with a score equal to or above 0.50 as
high risk and below 0.50 as low risk. This demonstrates that
machine learning models could be used for predicting and
classifying the risk of HIV using available EHR data.

Similar to other studies and consistent with local trends
in HIV epidemiology, in the cohort, the incidence rate based
on sex assigned at birth was higher in men compared with

women.8,9 Prediction tools that can accurately identify female
patients with an increased likelihood of HIV and who are
eligible for PrEP are needed to improve the implementation of
prevention interventions in this population. The Centers for
Disease Control and Prevention (CDC) estimates that 6.5% of
those assigned female at birth with indications for PrEP were
prescribed PrEP in 2018 compared with 20.9% of those
assigned male at birth.18 While Krakower et al and Marcus
et al models were unable to identify risk in female patients
with HIV, our model was able to identify 10 of 27 women
with incident HIV as at increased likelihood of HIV in the
unseen validation data set.8,9 Although the Friedman et al12

model was trained only on a female population, our approach
of using a unified model that can identify different sub-
populations of HIV risk allows for a single workflow. This
prediction model may be used to support clinicians in
identifying female patients with an increased likelihood of
acquiring HIV and linking these patients to preventative
services.

Our model also expanded on the capabilities of prior
models with the inclusion of a population in the southern
United States, where a disproportionate burden of incident
HIV is diagnosed.1 While the Burns et al13 model also was
able to predict the likelihood of HIV for a population in the
southern United States, this model relies on variable data
related to geographical incidence rates of HIV and, social
determinants from external data sources. An advantage to our
model is that it is built solely based on the availability of data

FIGURE 2. Relative variable importance.
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from the EHR allowing the model’s application in settings
with EHR data alone. In addition, our cohort included
a population that is 54% Hispanic and 27% non-Hispanic
Black, whereas other models were based on populations that
were not as diverse.

There were several other notable differences in our
model from other published models. For instance, our model
is trained on a population that is largely uninsured, as
opposed to the May et al11 model, which utilized data from
patients with private insurance. Our training and validation
data sets included 83.7% and 83.6% of patients with no
insurance coverage, 12.6% and 12.7% of patients with
Medicare/Medicaid insurance, and 3.6% and 3.5% of patients
with commercial insurance. PH, a safety-net hospital pre-
dominantly provides health care for underserved populations
across Dallas County. Our reported model outputs are very
comparable to published models in predicting HIV (see
Table 2, Supplemental Digital Content, http://links.lww.
com/QAI/C312) with a larger potential impact given the
underutilization of PrEP in the US South, among racial/ethnic
minority groups and marginalized populations.

The CDC recommends that medical providers counsel
all sexually active patients about PrEP and prescribe PrEP to
those who are at increased likelihood of acquiring HIV. While
the PPV of our EHR model is low, the goal of implementation
of such a model is to cast a wide net to assist providers in
identifying more patients who might be eligible for PrEP and
prompt a more in-depth history and assessment of PrEP
eligibility of the patients identified by the model.19 The goal
of implementation of such a model should not be to imply that
all patients who have a high prediction score should be
prescribed PrEP. Successful implementation of an EHR
prediction model into clinical practice must be paired with
provider tools to guide discussion and assessment of indica-
tions and eligibility criteria for PrEP with patients.

Prior studies indicate high acceptance by primary
care providers of incorporating automated HIV prediction
models into clinical practice. Providers perceived that the
use of HIV predictive tools would assist in identifying
PrEP-eligible patients who may otherwise be missed,
standardize and destigmatize risk assessments, and serve
as an educational tool to help patients visualize and
perceive risk.20,21 As models such as ours are implemented
into clinical practice, it will be essential to further assess
both provider and patients’ perspectives on the utility of the
model and identify any unintended consequences, such as
concerns over privacy and model accuracy. The study has
notable limitations. The predictive model was designed to
predict HIV at a single center, so this exact model may not
accurately predict incident HIV infections in other institu-
tions or geographic areas due to variations in HIV
epidemiologic trends. The PPV is low given the low
prevalence rate in the cohort, providing an opportunity
for improvement in the future. The model is also validated
on data from a time before multiple interventions institu-
tionally to increase the uptake of HIV prevention inter-
ventions, including PrEP, that may decrease the likelihood
of HIV. These interventions should be included in future
updates to the model to assess the impact on risk and PPV.

Our study cohort might have missed HIV diagnoses by
both the adjudicators and the training program.

In addition, our institutional incidence rate is higher than
that of Dallas County as a whole (0.08% vs 0.03%) likely due
to universal Emergency Department HIV testing protocols and
a higher prevalence of HIV in our county safety-net patient
population.22 Unlike the few existing models, this model does
not directly use geographical variables or prevalence rates by
zip codes, though its performance was comparable to prior
models that have used these variables. This geographic
independence could provide an opportunity to scale and
evaluate the model’s usage in other hospital settings elsewhere.
Finally, the ability of our EHR to detect MSM is limited and
requires the use of discrete data of sex assigned at birth and
sexual partner reported as male to define MSM, which could
miss patients within this category.

CONCLUSIONS
This study presents the usefulness of machine learning

models that leverage EHR data to optimize patient care and
outreach for populations with an increased likelihood of
acquiring HIV. Furthermore, this study was conducted with data
from a diverse, largely uninsured patient population residing in
an EHE priority jurisdiction. Future prospective studies should
evaluate different risk thresholds of the machine learning model
for optimal reach to increase HIV testing and prevention
interventions without compromising clinical workflow.
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